
32 N.Satlmov 

only the value z (1) of the phase variable z). As a rule this situation is common in linear 
differential games [8, 91. 
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We consider the behavior of a closed-loop stationary controlled system when the 

forcing functions belong to a certain class of functions (the Bulgakov problem [1, 
2-J). We derive estimates for the modulus of the maximum value of the output and 
for the largest accumulation of system errors. 

1. Consider the system of equations 

C,,?/(n) + c&-l) + . . . + c,_g/” + ?J’ = k.E, (t) 

/J-l) (0) = . . 

(1.1) 

. = y (0) -= 0 

E, (t) = .I (t) - !/ (t) 

Equations ( 1. 1) describe the behavior of a closed-loop linear astatic automatic control 
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system with rigid negative feedback, widely prevalent in practice, in which x (t) ir the 
forcing function, y (t) is the quantity being controlled, e, (t) is the system error. The 
forcing function is not known in advance and belongs to a class F of piecewise-conti- 
nuous functions satisfying the condition 

1 x (0 1 < in, U.2) 

The system’s performance indices are the maximum value ymax (t) of the output un- 

der the worst functions 3: (t) from class fi*, the largest accumulation amax (t) of system 
error, and its limit value :L as t --f co 

Emax (Q = maxh(t), E, = lim e 
XEF 

max (4 t ~ 

The stated problem is known as the Bulgakov problem [I, 21. For higher-order systems 
considerable computational difficulties are connected with the exact solution and the 
investigation of the influence of the control system’s parameters on Emax (t) and 8,. 

There is thus a pressing need to obtain guaranteed estimates for these quantites. Theorem 

1 gives an estimate on 1 yinll (tf 1 for forcing functions from the function class F 
Theorem 1. Let the gain k be chosen such that all roots zi of the characteristic 

polynomial of the closed-loop system (1.1) are located in the left halfplane and that 
the inequality 

- Re zi > a,, a, > 0, i =1,2 ,. 1 .,n fl.3) 
is satisfied. Then 

1 ymax (t) I& _E!!f- 
COU”” 

0.4) 

Proof. Taking the Laplace transform in Eqs, (X.1) we have 

y (p) = li Ic, (p - 21) * . . (p - 2,)1-1X (p) 

Here zi are roots of the characteristic polynomial N (p) of the closed-loop system (1.1) 

N (PI = P" + +pn-1 + . . . + l_ 
co P;t 

Having applied the convolution theorem and chosen the worst forcing function x(t) from 
the class of piecewise-continuous modulus-bounded functions, we obtain 

Here g (z) is the original corresponding to the transform [(p - zt) . . . (p - z,)] -l. 
The Laplace transform inversion theorem and the fulfillment of the hypotheses of Jordan’s 
lemma allow to represent g (T) as ,, 

g(Z)= 2 /, f1 (Zi- Zj)i_leXp (ZiZ) 
(1.6) 

i=l 'j-1, i#J 

The right hand side of expression (1.6) is a divided difference of order n - 1 of the 
function ept at points zl, , . . , z, of the complex plane ; representation (1.6) remains 
true under any coincidences of the points zl, . . ., 2, p]. By virtue of estimate derived 
in [3], for the modulus of a divided difference, we have 
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(1.7) 

We obtain estimates (1.4) by substituting (1.7) into expression (1.5). 
Note 1. The Laplace transform of the system error has the form 

E (P) = (1 - k/c&’ (~1) X (P) 

Therefore, for forcing functions satisfying condition (1.3) the estimate 

E, -< ml -I- km,/c, 

is valid for the maximum accumulation of error, 
Note 2. The choice of the gain k and its relation to the degree of stability a(, 

of the closed-loop system (1.1) have been examined in [4]. 

2, Let the forcing functions z (t) belong to a class F, of piecewise-continuous 
functions with a bounded rate of variation 

It: (0) = 0, I ilJ (t) I =G M 

A lower bound for the quantity E, is derived in Theorem 2. 

Theorem 2. Let the gain k be chosen such that system (1.1) is asymptotically 

stable. Then for forcing functions from class E, 

E, > m I k 

Proof. We set x1 = mt, then 

E, > lim Ed, (t) 
Since 

I-CO 

(2.1) 

L(p)=cop~-‘+C1pn-2+...+l, X1 (P) = mpea 

by the limit value theorem we obtain 

jii~ Ed, (t) = vz pE (p) = m/k 

The same follows from the fact that the magnitude of the error in an astatic system in 
steady-state under the linear forcing being considered equals mk-1 [5]. 

An upper bound for the quantities &max (t) and E, is given by Theorem 3. 
Theorem 3. Let the gain k be chosen such that all roots zi of the characteristic 

polynomial N (p) of closed-loop system (1.1) are located in the left halfplane and 
condition (1.3) is satisfied. Then for forcing functions from class F, 

Proof. From expression (2.1) for the error E (p) 

E (P) = 
L 04 x (PI 
PL (I4 -+ k 

Hence by the convolution theorem 

we obtain 
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Here s (t) is the original corresponding to the transform 

L (P) (PL (P) + i,_)-l 

For forcing functions x (t) from class F, 

By the Laplace transform inversion theoremand Jordan’s lemma we have 

S (T) = i \Co fi (Zi - Zj)]-l L (Zi) exp (Z$) (2.4) 
i=l i=i 

Mi 

Since zi are the roots of the equation N (p) = 0, then zi L (zi) = --h_. Taking 
this into account, from (2.4) we obtain 

‘(‘) z - $.s[fi (Zi-Zj)]mlZ~lC!Xp(Z,r) 
1-1 j=l 

i#i 

(2.5) 

The right-hand side of expression (2.5) is a divided difference of order n - 1 of the 
function eprp-l at the points zI, . , ., z,, of the complex plane. The estimate 

IS(~ k co (n - I)1 
,rl;, 1 (.$-y-” 1 CL 6) 

is valid for 1 s (T) ( . Differentiating (2.6) n - 1 times and taking (1.3) into account, 

we obtain 

(2.7) 

Substituting expression (2.7) into (2.3) and integrating, we obtain 

(2.8) 

We obtain estimate (2.2) by replacing the double sum in (2.8) by the sum 

jj (n - it!(&)’ 

i II 

For IZ = 2, if the roots z1 and z2 of the characteristic polynomial 1V (p) of system 
(1.1) are real. then the lower bound coincides with the exact value of the error, while 

for multiple roots z1 1 z2 the upper bound coincides with the exact value of the error. 

In particular, the problem of the exactness of system (1.1) under the worst forcings was 
examined in [4] and other upper and lower estimates were obtained for the largest accu- 
mulation of error. 
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NUMERICAL STABILITY INVESTIGATION OF THE LAGRANGE SOLUTIONS 

1. 
ton’s 

We examine the motion of three material points attracted to each other by New- 
law. The differential equations of motion of the three-body problem allow a particular 

solution, corresponding to the motion under which the three bodies form an equilateral 
triangle rotating in their own plane around the center of mass of the three-body system. 
We investigate the stability of this particular solution for the case of the elliptic restric- 
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We investigate numerically the triangular points of solutions of the elliptic restric- 

ted three-body problem. For the planar problem we have constructed, in the space 

of parameters e and p (e is the eccentricity, p is the ratio of the mass of the 
smaller of the two main bodies to the sum of their masses), the stability region for 
a majority of initial conditions and the region of formal stability. For resonant 
values of the parameters we found Liapunov-instability or stability in the fourth 

approximation relative to the coordinates and momenta of the perturbed motion. 
For spatial problems we have obtained a statement of stability in the fourth appro- 

ximation. 

ted three-body problem. 

We consider the planar problem. We select the measurement units such that the dis- 

tance between the bodies of finite mass, the sum of their masses, and the gravitational 
constant equal unity. Then in Nechvile coordinates with true anomaly v as the indepen- 
dent variable, the expansion of the Hamiltonian function of the perturbed motion has the 

form H-HHz+H3+Hr+... 

H2 = &P12 + Pz2) + Q2P1- q1p2+ 1 +eicosy($q12- +q2 -- 

(1.1) 

kqlq, + 1 2(1 yyc& @he + 422) 

HS= ’ 7 J&k 1 +ecosv --g- 413 + 3 1/F 16 41242 
11 

+--i-Z_9l422 ‘frk + 
3 

v/u 16 Qe3 


